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SETS OF DEGREES OF COMPUTABLE FIELDS* 

BY 

ELIE BIENENSTOCK 

ABSTRACT 

Given a E2 (resp. ~S~) degree of recursive unsolvability a, a computable field 
(resp. a computable field with a splitting algorithm) F is constructed in any given 
characteristic, such that the set of dimensions of all finite extensions of F has 
degree a. 

w Preliminaries 

Let k be a field, /~ its algebraic closure. We define the set of degrees of k as 

in [4]: 

S(k) = {n E N:  there exists a field F, k C F C / ~ , [ F : k ]  = n}. 

A set S _C N such that there exists a field k with S = S(k) is called a degree set. 

Several partial results on the characterization of degree sets are presented in [4]. 

The present  paper  deals with the following question: What  can be said about  the 

degree of recursive unsolvability of S(k) ,  if k is a computable  field? 

We adopt  the terminology of M. O. Rabin in [5]: (F, + , . )  is said to be  a 

computable  field if F is at most countable,  and there is a one to one mapping 

i:F--*N such that i(F) is a recursive set of integers and i t ransforms the addition 

and multiplication operat ions of F into recursive functions of i(F) ~ into i(F). 
Such a mapping i is called an admissible indexing of F. A computable  field F is 

said to possess a splitting algorithm with respect to the admissible indexing i, if 

there exists an effective procedure for deciding for every polynomial  f(t) E F(t), 
which is given as a sequence of the / - ind ices  of its coefficients, whether  or  not 

f(t) splits over  F. 
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It is proved in [4] that S(k)  is the set of degrees of irreducible polynomials in 

k[t]. It follows that whenever k is computable, S(k)  is a Z2 set in the 

arithmetical hierarchy of sets of natural numbers. For, let io be an admissible 

indexing of the ring k[t],  effective with respect to i, and such that i0 maps k[t] 
onto N. Then the relation M _C N 3 defined by 

(m, n2, n3) E M r iol(m), io'(n2) = iol(n3) 

is recursive, as well as the function d : N--', N defined by 

d(n) = deg (iol(n)), 

and we have: 
n E S(k)  r 3m VmlVm~ 

[ d(rn ) = n A ((m ~, mz, m) E M --* (d(m i) = d(m )v d(m ~) = 0))] 

which shows that S(k)  is ~2. 

Likewise, we see that if k possesses a splitting algorithm with respect to i 

(which amounts to say that the set I = {n E N:iol(n) is irreducible over k} is 

recursive), then S(k)  is Z~ (r.e.) for in this case 

n E S(k)  r 3m [ d ( m ) =  ham E I]. 

The principal theorems proved in the present paper are in some sense 

converses of the last two statements. Before we formulate these theorems we 

bring some more definitions and results of [4]: 

A finite extension E/k  is called cyclic if it is normal and the Galois group 

G ( E / k )  is cyclic. A field k is called a C E field if all finite extensions E/k  are 

cyclic. We denote by ~ the set of all prime positive integers. For any P _C ~, let 

Np be the set of all positive integers whose prime factors are all in P. The 

following results are proved in [4]. 

1) k is a C E field iff for each n E N, k has at most one separable extension of 

degree n(in a fixed algebraic closure /~). 

2) Every algebraic extension A of a C E field k is a C E field. Moreover, 

S(A)C_ S(k). 

3) For any P C_ ~, there exists a C E field K of any prescribed characteristic X, 

such that S (K )=  Np. 

Our principal theorems are "computable"  versions of statement 3: 

THEOREM 1.1. Let PC_ ~ be ~1, then there exists a C E field K o[ any 

prescribed characteristic X, such that K is computable, possesses a splitting 
algorithm, and S(K)  = Np. 
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(K possesses a splitting algorithm just means that there exists an admissible 

indexing i of K, such than K possesses a splitting algorithm with respect to i.) 

THEOREM 1.2. Let P C_ ~ be ~,2, then there exists a C E field K of any 

prescribed characteristic X, such that K is computable, and S ( K ) =  Np. 

As mentioned above, these two theorems can be considered as converses of 

the two first statements of this section. Indeed, let us denote by dg S the degree 

of recursive unsolvability of S, then it is clear that for any P _C ~, dg P = dg Np, 

and that for any degree a, there exists a set P _C ~ such that dg P = a. We thus get 

the following corollaries: 

COROLLARY. Let a be a E1 degree o[ recursive unsolvability. Then there exists a 

field K of any prescribed characteristic, such that K is computable, possesses a 

splitting algorithm, and dg S ( K )  = a. 

COROLLARY. Let a be a ~,2 degree of recursive unsolvability. Then there exists a 

field K o[ any prescribed characteristic, such that K is computable and 

dg S ( K )  = a. 

We thus have a complete characterization of dg S ( K )  for computable fields K, 

with or without splitting algorithms. 

Theorems 1.1 and 1.2 will be obtained by the construction of appropriate 

algebraic extensions of computable quasi-finite fields. A field F is said to be 

quasi-finite [1] if F is perfect and possesses precisely one extension of each 

degree. Any finite field is of course quasi-finite, and any quasi-finite fie|d is a C E 

field. Any finite extension of a quasi-finite field is obviously quasi-finite. It is 

shown in [1, beginning of w that quasi-finiteness can be characterized by a set of 

first-order sentences. It follows that any non-trivial ultraproduct of all prime 

finite fields is quasi-finite with characteristic 0. 

w Recursively presentable quasi-finite fields 

A structure ~ = (A, R e ) ~  is said to be recursively presentable if A is at most 

countable, and there is an enumeration of A : al, as . . . .  , such that the complete 

diagram of (~,  al, a2 . . . .  ) is decidable, that is 

{(r~o ~, i, . . . . .  it,): ~ I = ~ [a . . . . . .  , a,,]} is recursive. 

It is a well known theorem that any decidable theory admits a recursively 

presentable model (see, for example, [3, theor. 1, p. 115]). 
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Obviously, any recursively presentable field is computable and possesses a 

splitting algorithm. We need the following result of J. Ax: 

THEOREM (Ax). The theory of statements true in all but a finite set of prime 

finite fields is decidable [1, w theor. 13"]. 

Note that this theory contains the set of sentences which characterizes 

quasi-finite fields, as well as a set of sentences which says that the characteristic is 

0, so we may conclude: 

THEOREM 2.1. There exists a recursively presentable quasi-finite field of any 

prescribed characteristic X. 

PROOF. For X = 0, take a recursively presentable model of the theory of 

statements true in all hut a finite set of prime finite fields. For X = a prime p, take 

the prime field of characteristic p. 

w Proof of the main theorems 

We recall the following definitions and results of Rabin about computable 

fields: Let k~ and k: be computable fields, i, and i2 respective admissible 

indexings. An isomorphism ~ of k~ into k2 is said to be computable with respect 

to i~ and i2 if i2o~v oi~ t is a recursive function of i~(k,) into N. If in addition 

i2(~(k,)) is a recursive subset of i2(k2), we say that ~ is strongly computable with 

respect to i~ and i2. 

THEOREM (Rabin). (I). I f  k is a computable field and i an admissible indexing 
of k, then the algebraic closure k of  k is computable, and there exists an admissible 

indexing il of ff~ such that the imbedding isomorphism ~ of k into k is computable 
with respect to i and i~ [5, theor. 7]. 

(II). A necessary and sufficient condition for a computable field k to possess a 

splitting algorithm with respect to the admissible indexing i is the existence of an 

admissible indexing il of k such that the imbedding isomorphism q~ of k into k is 

strongly computable with respect to i and il [5, theor. 8]. 

PROOF OF THEOREM 1.1. Let k be a quasi-finite computable field which 

possesses a splitting algorithm. Such a field exists in any prescribed characteristic 

by Theorem 2.1. By Rabin's theorem, there exists an admissible indexing i of/~ 

such that i (k)  is a recursive subset of i(/~), and we clearly can assume that 

i(/~) = N. Let P _C ~ be recursively enumerable. We shall construct a field F, 

k C F C k, i(F) recursive, and S(F)  = N~,. This will prove the theorem. (The 
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recursiveness of i (F)  will imply that i IF is an admissible indexing of F, and that F 

possesses a splitting algorithm with respect to it. F will, of course, be a C E field 

as an algebraic extension of the C E field k.) 

If P = ~ ,  then Np = {1}, and F =/~. 

Assume P ~  ~ .  Then, P being r.e., there exists a recursive A :N ~ N with 

(3.1) V p E ~ ( p ~ P ~ 3 n  p =p~t,)) ,where p, = t h e  n'" prime. 

We define an increasing sequence of fields k = ko C_ kl C_ �9 �9 �9 C/~ as follows: 

k. = k._z(i-~(n)) if Vm <- n p~.)]([k~_~(i-~(n)): k.-z] 
(3.2). 

L k. = ko_~ otherwise. 

(It is assumed that Vn p ~ . ~  1.) 

Let F =  U.<~k..  

PROPOSITION 1. There exists an algorithm which decides, given any n, whether 

k~ = k._~ or k. = k._~(i-~(n)). 

For the proof of Proposition 1, we need two more results about computable 

fields: 

LEMMA. Let i be an admissible indexing of the algebraic closure ffc of a field k, 

such that the set i(k ) is recursive. Then the [unction d : i(k)---*N defined by 

d ( n )  = [k (i-~(n)):k] is recursive [5, lemma 6]. 

THEOREM. Let i be an admissible indexing of the algebraic closure F~ of a perfect 
field k, such that the set i(k ) is recursive. Then the set i ( k (a ) )  is recursive for every 

a ~ k. Moreover, the following relation is recursive: 

{(m, (n~, . . ., n, )): i-~(m ) E k (i-~(n~) . . . . .  i-~(n,))}. 

The first part of the theorem which in view of Rabin's theorem approximately 

says that any finite separable extension of a computable field possessing a 

splitting algorithm is itself computable and possesses a splitting algorithm, is a 

result of Van der Waerden [6, pp. 134-135], and a proof of it in terms of 

admissible indexings can be found in [5, theor. 9]. This proof is easily seen to 

imply in fact the stronger second part of the theorem. 

PROOF OF PROPOSITION 1. Let n -  1. To decide whether k, = k,_~ or k, = 

k~_~(i-~(n)), proceed as follows: compute d~ = [ko(i-~(1)):ko]. This can be done 

effectively by the above lemma. Decide whether k~ = ko or k~ = ko(i-~(1)) 

according to condition (3.2)~: 
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k,= ko(i-l(1)) itt p, tut d,. 

By the above theorem, i(kO is recursive, and the lemma can again be applied to 

compute d2 = [k~(i-l(2)):kl] and decide whether k2 = k~ or k2 = k1(i-1(2)), ac- 

cording to condition (3.2)2. The final answer for k, is obtained after n similar 

steps. Note that this procedure is uniform in n. 

PROPOSITION 2. For all n, i-l(n) E F iff i-l(n) E k.. 

PROOF. Suppose there exists n, < n2 with i-I(n,)E k,~, i-l(nl)~ k.,. By 

(3.2).,, (::Ira _< nl P*~,-~I [k .,_~(i-1(nl)) : k .,-1]). Since i-l(n~) E k.~, p~cm~l[k,~:k.,-~], 
but this is impossible for it follows from (3.2). that for any element i-'(n) 
adjoined from the ruth step onwards, the degree [k._l(i-l(n)):k._l] is not 

divisible by p,(m~. 

It follows from Propositions 1 and 2 that the set i(F) is recursive: for all 

n, n E i(F) itt n E i(k.) iff k. = k._l(i-l(n)), and this is decidable. 

It remains to be shown that S(F)= Np: 

PROPOSITION 3. Ne _C S(F).  

PROOF. Let m E Np. By (3.1) there exists no such that Vp E 

(p l rn~3n<-no:p=p, ( ,~) ,  which by (3.2). for n>no implies that 

(m,[k,:k,~]) = 1 for all n -> no. 

Let A C_/~ be an extension of k.. satisfying [A:k..] = m (k,~ is quasi-finite as a 

finite extension of k). Then clearly A f'l F = k~o. Now if N/K is Galois, E is an 

extension of K, and L = E n N, then E and N are linearly disjoint over L (see, 

for example, [2, w theor. 1]). In our case, since all the finite extensions 

considered are Galois and even cyclic, it follows that A and F are linearly 

disjoint over k.o, which is equivalent to [AF:F]  = [A:k.o] = m. Hence m E S(F). 

PROPOSITION 4. S (F) C_ Ne. 

PROOF. Let m E S(F),  [A : F] = m, and let p be a prime divisor of m. Since 

A/F is cyclic, there exists a field ~ ,  F C �9 C A, [O:F] = p. Let 0 = i-*(nl) ~ k be 

a primitive element of the extension O/F, and let mo be such that all the 

coefficients of the minimal polynomial of 0 are in k,.o. Then 

m >- mo ~ [km(O):k,.] = [ F ( 0 ) : F ]  = p. 

Since O~F, we have, by Proposition 2, Off k.,. Hence there is n 2 -  < nl with 

P ~-2~ I [k .,-~(0): k .,-1]. 

If n l -  1 -> too, then [k.,_l(O):k.,-l] = p, so p = P,~.2~. 
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If nl - 1 < m,,, then p,c,2) l[k~,,(O):k .,_,] = [k.~,(O):k,~]. [k~:k ,,_,]. By our con- 

struction P,~,2~ ? [k, :k,  ,] for all n-> n2, implying P,c.2~ .~ [k,~,:k.,_~]. Hence 

P~,.~I [k,~,(O):k,~,] = p, so p = p,t,:). This shows that p E P. 

PROOV OV THEOREM 1.2. Again, k is quasi-finite of a prescribed characteris- 

tic X, and i is an admissible indexing of/~, such that the set i (k )  is recursive, and 

i(/~) = N. P C_ ~ is Z2. We shall construct a computable field F, k C F C/~, such 

that S ( F ) =  Np. 

LEMMA. Let S C N be II2. There exists a sequence of sets of integers {A.}~=~ 

such that: 

1) S = l i m s u p A ,  = NT,=~ UT_,, A,. 

2) I f  X. is the characteristic function of the set A.,  then X. (m)  is a recursive 

function of n and m. 

3) A .  ~ Q for all n. 

PROOF. Since S is I12, there exists a recursive R _C N 3, such that 

Vs E N(s  E S * - * V m B n ( m , n , s ) E  R).  

We define f ( n , s ) = m a x { m : m < - n ^ V m ' < - m 3 n ' < _ n ( m ' , n ' , s ) E R } .  Then f 

is clearly a recursive function, and for every fixed s,,, f(n, so) is a non-decreasing 

function of n. 

Define A,  _C N by: 

s E A .  ~-*s = n v f ( n , s ) > f ( n  - 1,s). 

From the definition of f, it follows that for every fixed so, the function f(n, so) 

has an infinite number of jumps if[ V m 3 n  (m, n, s,,)E R, i.e. iff s,,E S. This 

proves property (1). 

(2) is clear since f is recursive, and (3) follows from the fact that n E A,  for 

all n. 

Returning to the proof of Theorem 1.2, let S = ~ - P. Since P is E2, S is H2 

and there exists for S a sequence {A.}~=, as in the lemma. We clearly can assume 

that A. _C ~ and 1 ~ A.  for all n. 

Let k = k,,C_ k~ C . . .  _C/~ be the sequence of fields defined by k.+, = k.(O.+,), 

where 0.+~ is the first element 0 of/~ (in the enumeration i-~(1), i- '(2) . . . .  ) which 

satisfies [k . (O):k . ]@A. .  For each n,O.§ exists, for the finiteness of the 

extension k./k,, implies that k. is quasi-finite, and for any p E A., there exists 

0 E/~ with [k.(O):k.] = p. Moreover, 0.., can be found effectively, i.e. the 

function f ( n ) =  i(O.) is recursive. 
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Define F = U.~k.. 

LEMMA. Let k be a computable field, i an admissible indexing of k, and A a 

subset of k such that i (A ) is recursively enumerable. Then the subfield o[ k 

generated by A is computable. 

A proof of the lemma for the case of computable groups may be found in [5, 

theor. 3]. The proof for computable fields is completely analogous. 

It follows from the lemma that F is computable. 

Finally we prove S ( F ) =  Np: 

1) Np C_ S(F). Let m E Np. Since lim sup A.  = ~ - P, there exists no such 

that for all n -~ n,, no member  of A.  divides m. k,~, being quasi-finite, there exists 

an extention A/k~,, [A : k~,] = m, and as in the proof of Theorem 1.1 (Proposition 

3), we see that A and F are linearly disjoint over k.,,. Thus [AF:F]  = m, and 

m E S (F). 

2) S (F) _C N~. Let n E S (F), and p E ~, p [ n. As in the proof of Theorem 1.1 

(Proposition 4), we can find O,,E k and mo such that m >-mo ~ [k,,(Oo):k,,] = 

[F(O,):F] = p. Suppose that pf f  P. Then p E lira sup A,, which means that there 

is a sequence {nj }~', such that, for every j, p E A,.  Now 0,,~, is the first member 0 

of /~ such that [k.,(O):k,,]EA,,.  For all j such that n, >-m,,, 0, satisfies 

[k,,(O.):k.,] = p E A.,, hence it belongs to the set of candidates for adjunction at 

step n,. It follows that 0,, must indeed be adjoined in the construction of F at 

most at the n,,+,(,.~ step, where j0 is the least j such that n, >-too. This is a 

contradiction, which shows that p E P. 

w Concluding remark 

As in [2], let S*(k)  = {n ~ N: there exists a normal extension F/k,  [F:k]  = n}. 

The same questions we asked about S ( k )  naturally arise for S*(k).  

First, note that for any field k, k has a normal extension of degree n iff k has a 

normal simple extension of degree n. Now, it is not difficult to show that the 

proposition "k  has a normal simple extension of degree n "  can be formulated as 

a 2,2 sentence about k, or as a Y~l sentence if we allow the use of a supplementary 

predicate I ( f ) ,  whose interpretation in k[t] is: ]'(t) is irreducible over k. 

It follows that, as for S (k), S*(k)  is Z2 whenever k is computable, and it is 2`1 

if, in addition, k possesses a splitting algorithm. 

Since all the fields whose existence was proved in this paper are C E fields, 

they satisfy S*(F)  = S (F). We thus obtain for sets of normal degrees the same 

full characterization as for sets of degrees. 
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